If it's not what You are looking for type in the equation solver your own equation and let us solve it.
g^2+26g+25=0
a = 1; b = 26; c = +25;
Δ = b2-4ac
Δ = 262-4·1·25
Δ = 576
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$g_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$g_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{576}=24$$g_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(26)-24}{2*1}=\frac{-50}{2} =-25 $$g_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(26)+24}{2*1}=\frac{-2}{2} =-1 $
| 3y^2-43y+14=0 | | 2g^2-11g-13=0 | | 3x+11=4x-29 | | 2q^2-19q+9=0 | | 72=9+7q | | (5x-4)/3=(11x+2)/8 | | X/27/100=x/12. | | −2r−14= 1414 | | -2x+3=-(-x+6) | | -2x+3=-(-1+6) | | 6x²-24x+24=0 | | 3x-6=159 | | 12k=36+3k | | B+a-12=180 | | t^2+24t+23=0 | | 4f+16=8 | | 27/9=x/3 | | 3(4z-3)-(39+60)=0 | | K^2-18k+8=-9 | | 12x+2=-26 | | |3x+4|=x-8 | | 14.4=4u-6 | | p+5/3=-1 | | c/2+-12=-15.8 | | 9x^2+16x+6=0 | | 5(x+3)+4=3(x+2)+15 | | -4=j/3-6 | | 40x+20=45x-90 | | b/10+92=98 | | 3g+11=53 | | 9x+15x+6=0 | | -6(h-85)=-36 |